Copied to
clipboard

G = C2xC42:6C4order 128 = 27

Direct product of C2 and C42:6C4

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2xC42:6C4, C24.151D4, (C2xC42):17C4, C42:42(C2xC4), C4o(C42:6C4), C22.40C4wrC2, (C2xC4).64C42, C4.14(C2xC42), C42:C2:13C4, (C22xC4).85Q8, C23.59(C4:C4), M4(2):18(C2xC4), (C2xM4(2)):12C4, C23.536(C2xD4), (C22xC4).751D4, (C22xC42).15C2, (C23xC4).666C22, C23.225(C22:C4), C4.15(C2.C42), (C22xC4).1298C23, (C2xC42).1044C22, (C22xM4(2)).10C2, C42:C2.256C22, (C2xM4(2)).295C22, C22.28(C2.C42), (C2xC4:C4):20C4, C4:C4:33(C2xC4), C2.4(C2xC4wrC2), C4.72(C2xC4:C4), C22.8(C2xC4:C4), (C2xC4).177(C2xQ8), (C2xC4).121(C4:C4), (C2xC4)o(C42:6C4), (C2xC4).1491(C2xD4), C4.102(C2xC22:C4), (C2xC42:C2).5C2, (C22xC4).400(C2xC4), (C2xC4).344(C22xC4), C2.9(C2xC2.C42), (C2xC4).392(C22:C4), C22.103(C2xC22:C4), SmallGroup(128,464)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C2xC42:6C4
C1C2C22C23C22xC4C23xC4C22xC42 — C2xC42:6C4
C1C2C4 — C2xC42:6C4
C1C22xC4C23xC4 — C2xC42:6C4
C1C2C2C22xC4 — C2xC42:6C4

Generators and relations for C2xC42:6C4
 G = < a,b,c,d | a2=b4=c4=d4=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=c-1 >

Subgroups: 388 in 244 conjugacy classes, 116 normal (32 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, C23, C23, C23, C42, C42, C22:C4, C4:C4, C4:C4, C2xC8, M4(2), M4(2), C22xC4, C22xC4, C22xC4, C24, C2xC42, C2xC42, C2xC22:C4, C2xC4:C4, C42:C2, C42:C2, C22xC8, C2xM4(2), C2xM4(2), C23xC4, C23xC4, C42:6C4, C22xC42, C2xC42:C2, C22xM4(2), C2xC42:6C4
Quotients: C1, C2, C4, C22, C2xC4, D4, Q8, C23, C42, C22:C4, C4:C4, C22xC4, C2xD4, C2xQ8, C2.C42, C4wrC2, C2xC42, C2xC22:C4, C2xC4:C4, C42:6C4, C2xC2.C42, C2xC4wrC2, C2xC42:6C4

Smallest permutation representation of C2xC42:6C4
On 32 points
Generators in S32
(1 10)(2 9)(3 6)(4 5)(7 11)(8 12)(13 15)(14 16)(17 26)(18 27)(19 28)(20 25)(21 31)(22 32)(23 29)(24 30)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 7 13 4)(2 8 14 3)(5 10 11 15)(6 9 12 16)(17 32 19 30)(18 29 20 31)(21 27 23 25)(22 28 24 26)
(1 23 2 26)(3 22 4 25)(5 20 6 32)(7 27 8 24)(9 17 10 29)(11 18 12 30)(13 21 14 28)(15 31 16 19)

G:=sub<Sym(32)| (1,10)(2,9)(3,6)(4,5)(7,11)(8,12)(13,15)(14,16)(17,26)(18,27)(19,28)(20,25)(21,31)(22,32)(23,29)(24,30), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,7,13,4)(2,8,14,3)(5,10,11,15)(6,9,12,16)(17,32,19,30)(18,29,20,31)(21,27,23,25)(22,28,24,26), (1,23,2,26)(3,22,4,25)(5,20,6,32)(7,27,8,24)(9,17,10,29)(11,18,12,30)(13,21,14,28)(15,31,16,19)>;

G:=Group( (1,10)(2,9)(3,6)(4,5)(7,11)(8,12)(13,15)(14,16)(17,26)(18,27)(19,28)(20,25)(21,31)(22,32)(23,29)(24,30), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,7,13,4)(2,8,14,3)(5,10,11,15)(6,9,12,16)(17,32,19,30)(18,29,20,31)(21,27,23,25)(22,28,24,26), (1,23,2,26)(3,22,4,25)(5,20,6,32)(7,27,8,24)(9,17,10,29)(11,18,12,30)(13,21,14,28)(15,31,16,19) );

G=PermutationGroup([[(1,10),(2,9),(3,6),(4,5),(7,11),(8,12),(13,15),(14,16),(17,26),(18,27),(19,28),(20,25),(21,31),(22,32),(23,29),(24,30)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,7,13,4),(2,8,14,3),(5,10,11,15),(6,9,12,16),(17,32,19,30),(18,29,20,31),(21,27,23,25),(22,28,24,26)], [(1,23,2,26),(3,22,4,25),(5,20,6,32),(7,27,8,24),(9,17,10,29),(11,18,12,30),(13,21,14,28),(15,31,16,19)]])

56 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4AB4AC···4AJ8A···8H
order12···222224···44···44···48···8
size11···122221···12···24···44···4

56 irreducible representations

dim1111111112222
type++++++-+
imageC1C2C2C2C2C4C4C4C4D4Q8D4C4wrC2
kernelC2xC42:6C4C42:6C4C22xC42C2xC42:C2C22xM4(2)C2xC42C2xC4:C4C42:C2C2xM4(2)C22xC4C22xC4C24C22
# reps14111844852116

Matrix representation of C2xC42:6C4 in GL4(F17) generated by

16000
01600
0010
0001
,
1000
01600
0010
0004
,
1000
0100
0040
00013
,
4000
01600
00016
00160
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,4],[1,0,0,0,0,1,0,0,0,0,4,0,0,0,0,13],[4,0,0,0,0,16,0,0,0,0,0,16,0,0,16,0] >;

C2xC42:6C4 in GAP, Magma, Sage, TeX

C_2\times C_4^2\rtimes_6C_4
% in TeX

G:=Group("C2xC4^2:6C4");
// GroupNames label

G:=SmallGroup(128,464);
// by ID

G=gap.SmallGroup(128,464);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,2019,248,4037]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^4=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<